Positional accuracy of novel x-ray-image-based dynamic tumor-tracking irradiation using a gimbaled MV x-ray head of a Vero4DRT (MHI-TM2000).

نویسندگان

  • Nobutaka Mukumoto
  • Mitsuhiro Nakamura
  • Akira Sawada
  • Kunio Takahashi
  • Yuki Miyabe
  • Kenji Takayama
  • Takashi Mizowaki
  • Masaki Kokubo
  • Masahiro Hiraoka
چکیده

PURPOSE To verify the positional accuracy of a novel x-ray-image-based dynamic tumor-tracking (DTT) irradiation technique using the gimbaled MV x-ray head of a Vero4DRT (MHI-TM2000). METHODS Verification of the x-ray-image-based DTT was performed using three components: a three-dimensional moving phantom with a steel ball target, a laser displacement gauge, and an orthogonal kV x-ray imaging subsystem with a gimbaled MV x-ray head and the system controller of the Vero4DRT. The moving phantom was driven based on seven periodic patterns [peak-to-peak amplitude (A): 20-40 mm, breathing period (T): 2-5 s] and 15 patients' aperiodic respiratory patterns (A: 6.5-22.9 mm, T: 1.9-5.8 s). The target position was detected in real time with the orthogonal kV x-ray imaging subsystem using the stereo vision technique. Subsequently, the Vero4DRT predicted the next position of the target, and then the gimbaled MV x-ray head tracked the corresponding orientation of the target. The displacements of the target were measured synchronously using the laser displacement gauge. The difference between the target positions predicted by the Vero4DRT and those measured by the laser displacement gauge was computed as the prediction error (E(P)), and the difference between the target positions tracked by the gimbaled MV x-ray head and predicted target positions was computed as the mechanical error (E(M)). Total tracking system error (E(T)) was defined as the difference between the tracked and measured target positions. RESULTS The root mean squares (RMSs) of E(P), E(M), and E(T) were up to 0.8, 0.3, and 0.7 mm, respectively, for the periodic patterns. Regarding the aperiodic patterns, the median RMSs of E(P), E(M), and E(T) were 1.2 (range, 0.9-1.8) mm, 0.1 (range, 0.1-0.5) mm, and 1.2 (range, 0.9-1.8) mm, respectively. From the results of principal component analysis, tracking efficiency, defined as the ratio of twice the RMS of E(T) to A, was improved for patients with high respiratory function (R = 0.91; p < 0.01). CONCLUSIONS The present study demonstrated that the Vero4DRT is capable of high-accuracy x-ray-image-based DTT. E(T) was caused primarily by E(P), and E(M) was negligible. Furthermore, principal component analysis showed that tracking efficiency could be improved with this system, especially for patients with high respiratory function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accuracy verification of infrared marker-based dynamic tumor-tracking irradiation using the gimbaled x-ray head of the Vero4DRT (MHI-TM2000).

PURPOSE To verify the accuracy of an infrared (IR) marker-based dynamic tumor-tracking irradiation system (IR tracking) using the gimbaled x-ray head of the Vero4DRT (MHI-TM2000). METHODS The gimbaled 6-MV C-band x-ray head of the Vero4DRT can swing along the pan-and-tilt direction to track a moving target. During beam delivery, the Vero4DRT predicts the future three-dimensional (3D) target p...

متن کامل

Effect of audio instruction on tracking errors using a four‐dimensional image‐guided radiotherapy system

The Vero4DRT (MHI-TM2000) is capable of performing X-ray image-based tracking (X-ray Tracking) that directly tracks the target or fiducial markers under continuous kV X-ray imaging. Previously, we have shown that irregular respiratory patterns increased X-ray Tracking errors. Thus, we assumed that audio instruction, which generally improves the periodicity of respiration, should reduce tracking...

متن کامل

Long‐term stability assessment of a 4D tumor tracking system integrated into a gimbaled linear accelerator

We assessed long-term stability of tracking accuracy using the Vero4DRT system. This metric was observed between September 2012 and March 2015. A programmable respiratory motion phantom, designed to move phantoms synchronously with respiratory surrogates, was used. The infrared (IR) markers moved in the anterior-posterior (AP) direction as respiratory surrogates, while a cube phantom with a ste...

متن کامل

Feasibility evaluation of a new irradiation technique: three-dimensional unicursal irradiation with the Vero4DRT (MHI-TM2000)

The Vero4DRT (MHI-TM2000) is a newly designed unique image-guided radiotherapy system consisting of an O-ring gantry. This system can realize a new irradiation technique in which both the gantry head and O-ring continuously and simultaneously rotate around the inner circumference of the O-ring and the vertical axis of the O-ring, respectively, during irradiation. This technique creates three-di...

متن کامل

Evaluation of Tumor Control and Normal Tissue Complication Probability in Head and Neck Cancers with Different Sources of Radiation: A Comparative Study

Introduction: The ultimate goal of radiation treatment planning is to yield a high tumor control probability (TCP) with a low normal tissue complication probability (NTCP). Historically  dose volume histogram (DVH) with only volumetric dose distribution was utilized as a popular tool for plan evaluation  hence present study aimed to compare the radiobiological effectiveness of the cobalt-60 (Co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 39 10  شماره 

صفحات  -

تاریخ انتشار 2012